Civil Engineering - Strength of Materials - Discussion

Discussion Forum : Strength of Materials - Section 1 (Q.No. 28)
28.
For a given material Young's modulus is 200 GN/m2 and modulus of rigidity is 80 GN/m2. The value of Poisson's ratio is
0.15
0.20
0.25
0.30
0.40
Answer: Option
Explanation:
No answer description is available. Let's discuss.
Discussion:
24 comments Page 1 of 3.

Nitin ingole said:   1 decade ago
Answer should be 0.25 Poisson's ration = ( E-2G )/2G = (200-2x80)/2*80 = 0.25.

Rathi said:   1 decade ago
Relation between young's modulus(E), Rigidity modulus(G) and Poisson's ratio(u).

E = 2G(1+u).

u = E/2G - 1.

= 200/2*80 - 1.

u = 0.25.
(1)

Manasa Sundaram said:   1 decade ago
c = mE/2(m+1).

1+(1/m) = (2*10^5)/(2*(8*10^4)).

1+u = 1.25.

u = 0.25.

Vikas Kumar said:   1 decade ago
Formula of poisson ratio = (E-2G)/2G.

Where E = Young's modulus.
G = Modulus of Rigidity.

Now U = (200-2*80)/2*80 = 0.25.

Mayuri said:   1 decade ago
E = 2G (1-1/m).
200 = 2*80(1-1/m).
200 = 160-160/m.
40 = 160/m.
1/m = 40/160.
1/m = 0.25.

PIYUSH SINGH said:   1 decade ago
Young modulus = E.
Modulus of Rigidity = G.
Poisson's Ratio = U.

Formula => E = 2G (1-u).

Therefore:

A) 200 = 2*80 (1-u).
B) 1-u = 1.25.
C) u = 1.25-1.
D) u = 0.25.

Susmita said:   1 decade ago
We know that C = mE/2 (m+1).

Where C = 80GN/m2.

E = 200GN/m2.

1/m = Poisson's ratio = 0.25.

Abhay said:   10 years ago
Young's modulus E = 2G(1 + μ) where, G = Modulus of rigidity.

=> μ = E/2G - 1.

=> 200/(2*80) - 1.

= 1.25 - 1.

μ = 0.25.

Krishna said:   9 years ago
You are correct @Rathi.

E = 2G(1+mu)
then u = 0.25.

Mujru said:   9 years ago
The equation related to bulk modulus and modulus of rigidity is;

E = 2n(1+u).
E = bulk modulus,
n= modulus of rigidity,
u = possion raito.

So,
u = E/2n -1.
= 200/(80 * 2) - 1.
= 0.25.


Post your comments here:

Your comments will be displayed after verification.