Electronics and Communication Engineering - Digital Electronics - Discussion

Discussion Forum : Digital Electronics - Section 1 (Q.No. 12)
12.
In the expression A + BC, the total number of minterms will be
2
3
4
5
Answer: Option
Explanation:

The min terms are ABC + ABC + AB C + ABC + ABC.

Discussion:
30 comments Page 1 of 3.

Padmaja said:   9 years ago
A B C BC A+BC
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 0 1
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

Write the expressions for true values i.e. for 1 values.

First five are true values.

ABC + ABC' + AB'C + AB'C' + A'BC.
(1)

Dhammapriya said:   7 years ago
First of all, we need to convert a given logical expression into the standard form for minterms called canonical form. Ex. A+BC = A(B+B')(C+C') + BC(A+A').

Now solve this expression with the help of Boolean Laws you will arrive at A+BC = ABC + ABC' + AB'C + AB'C' + A'BC.
(21)

Cherish said:   5 years ago
@Mohiyuva it's all about "and gate" & "or gate".


Truth Table:

A -- B -- C -- Output
0 -- 0 -- 0 -- F
0 -- 0 -- 1 -- F
0 -- 1 -- 0 -- F
0 -- 1 -- 1 -- T
1 -- 0 -- 0 -- T
1 -- 0 -- 1 -- T
1 -- 1 -- 0 -- T
1 -- 1 -- 1 -- T.

5 true. So 5 minterm.
(14)

Sharon said:   1 decade ago
In this we are using De Morgan's law.

i.e A+BC = A(B+B')+BC(A+A').

= AB+AB'+ABC+A'BC.

= AB(C+C')+AB'(C+C')+ABC+A'BC.

= ABC+ABC'+AB'C+AB'C'+ABC+A'BC.

= ABC+ABC'+AB'C+A'BC(ABC+ABC=ABC).

= 1+1+1+1+1 = 5 min terms.

So, the total no. of min terms are 5.

Deepshikha said:   8 years ago
Yes, @Padmaja.

If we want to find max terms of the same function then in the above expression, we just have to write the expression for the false values (0). So we get three expressions that is A'B'C'+A'B'C+A'BC'.

Aneesh.M said:   10 years ago
A+BC = A (B+B') (C+C') + BC (A+A').

= (AB+AB') (C+C') + ABC + A'BC.

= ABC + ABC' + AB'C + AB'C' + ABC + A'BC.

= ABC + ABC' + AB'C + A'BC' + A'BC.

Since (ABC + ABC = ABC).

Hence 5 minterms.
(2)

Seetha kumari said:   9 years ago
How to find the minterm?

A + BC = A (B + B') (C + C') + BC (A + A').
= A (BC + BC '+ B'C + B'C') + BCA + BCA',
= ABC + ABC'+ AB'C + AB'C' + BCA + BCA',
= 2ABC + ABC' + AB'C + AB'C' + A'BC.
(3)

ABDULLAH AKHTAR said:   8 years ago
Your formula A + BC = (A + B) (A + C). Is write but we have to find minterms @RAMESH.

Adil Tanveer said:   7 years ago
If we obtain the minterm then how can we obtain max term?

Please, anyone explain it.

Mohiyuva said:   6 years ago
@Padmaja.

Could you please explain how to give 0's & 1's for that expression?


Post your comments here:

Your comments will be displayed after verification.