Aptitude - Ratio and Proportion - Discussion
Discussion Forum : Ratio and Proportion - General Questions (Q.No. 2)
2.
Two numbers are respectively 20% and 50% more than a third number. The ratio of the two numbers is:
Answer: Option
Explanation:
Let the third number be x.
Then, first number = 120% of x = | 120x | = | 6x |
100 | 5 |
Second number = 150% of x = | 150x | = | 3x |
100 | 2 |
![]() |
![]() |
6x | : | 3x | ![]() |
= 12x : 15x = 4 : 5. |
5 | 2 |
Discussion:
134 comments Page 2 of 14.
Bagavathsingh said:
2 years ago
Third number = x
First number = 20x/100
Second number = 50x/100
Assuming x = 10.
Put the value'
= (20*10/100) + 10 = 12,
= (50*10/100) + 10 = 15,
= 12:15.
= 4:5.
First number = 20x/100
Second number = 50x/100
Assuming x = 10.
Put the value'
= (20*10/100) + 10 = 12,
= (50*10/100) + 10 = 15,
= 12:15.
= 4:5.
(24)
Ramya D said:
1 year ago
Assume the third number as X,
so x+20/100 // x+50/100,
120x/100 // 150x/100,
6/5 : 3/2 => 6 * 2 : 5 * 3 => 4 : 5.
so x+20/100 // x+50/100,
120x/100 // 150x/100,
6/5 : 3/2 => 6 * 2 : 5 * 3 => 4 : 5.
(23)
Sujathaasree said:
2 years ago
How come 120 and 150 came? Please explain to me.
(22)
Ktricia said:
2 years ago
Please explain, how did 6x/5 and 3x/2 became 4:5? Please explain.
(21)
Ramkumar P said:
1 year ago
120/100 : 150/100.
120 : 150,
4 : 5.
120 : 150,
4 : 5.
(20)
Lokesh said:
2 years ago
@Sujaathasree.
If the percentage increases or mentioned directly we can take it as 100+20% since the percentage increases directly to 100 and if loss or decrease by 20% then we should do 100-20%.
If the percentage increases or mentioned directly we can take it as 100+20% since the percentage increases directly to 100 and if loss or decrease by 20% then we should do 100-20%.
(17)
FOUAD said:
1 year ago
Let A = 1.2 X.
Let B = 1.5 X.
A/B = 1.2X/1.5X,
A/B = 4/5,
A:B = 4:5.
Let B = 1.5 X.
A/B = 1.2X/1.5X,
A/B = 4/5,
A:B = 4:5.
(15)
Wasiu mujeeb said:
3 years ago
It is very helpful. Thanks all for the explanation.
(14)
Shakti said:
4 years ago
Let 3rd number is "c" and the 1st and 2nd is;
A,B.
Then,
A is the 20% more than c.
Means A = c+20%c.
= c+.2c.
= 1.2c.
Same hear,
B is the 50% more than of c.
Means. B = c + 50%c.
= c + .5c,
= 1.5c.
Then the 2 number ratio is,
A:B = 1.2c:1.5c.
(Multiply in both sides 10 to avoid the decimal point)
1.2c * 10:1.5c * 10.
12c:15c,
4:5.
A,B.
Then,
A is the 20% more than c.
Means A = c+20%c.
= c+.2c.
= 1.2c.
Same hear,
B is the 50% more than of c.
Means. B = c + 50%c.
= c + .5c,
= 1.5c.
Then the 2 number ratio is,
A:B = 1.2c:1.5c.
(Multiply in both sides 10 to avoid the decimal point)
1.2c * 10:1.5c * 10.
12c:15c,
4:5.
(11)
Diyaa said:
1 year ago
Let the third number be denoted as x.
The first number is 20% more than x.
Therefore, the first number is: x+0.2x = 1.2x.
The second number is 50% more than x.
Therefore, the second number is x+0.5x = 1.5x.
We need to find the ratio of the first to the second number: 1.2x/1.5x.
The x terms cancel out, simplifying the ratio into 4/5.
So, the Answer is 4/5.
The first number is 20% more than x.
Therefore, the first number is: x+0.2x = 1.2x.
The second number is 50% more than x.
Therefore, the second number is x+0.5x = 1.5x.
We need to find the ratio of the first to the second number: 1.2x/1.5x.
The x terms cancel out, simplifying the ratio into 4/5.
So, the Answer is 4/5.
(11)
Post your comments here:
Quick links
Quantitative Aptitude
Verbal (English)
Reasoning
Programming
Interview
Placement Papers