Verbal Reasoning - Arithmetic Reasoning - Discussion

Discussion Forum : Arithmetic Reasoning - Section 2 (Q.No. 15)
15.
A total of 324 coins of 20 paise and 25 paise make a sum of Rs. 71. The number of 25-paise coins is
120
124
144
200
Answer: Option
Explanation:

Let the number of 20-paise coins be x. Then, number of 25-paise coins = (324 - x).

Therefore 0.20 x x + 0.25 (324 - x) = 71 20x + 25 (324 - x) = 7100

5x= 1000 x = 200. Hence, number of 25-paise coins = (324 - x) - 124.

Discussion:
5 comments Page 1 of 1.

Bishnu prasad acharya said:   2 years ago
100pasia = RS1.
20Pasia = 5coins.
25pasia = 4coins.
Then 25pasia coins = 324/9 * 4 = 124.
(2)

Siri said:   7 years ago
Given, total number of coins = 324.

Let the number of 20-paise coins be x.
and let the number of 25-paise coins be y.

Therefore x + y = 324 ===> equation 1.
Sum of 20-paise and 25-paise coins are;
0.20x + 0.25y = 71.

Converting the above equation we get
20x + 25y = 7100 ===> equation 2.
Solving equation 1&2, we get
Multiply equation 1 with 20
20x + 20y = 6480 ===> equation 3.

Subtracting equation 2 from equation 3
20x + 25y = 7100
-20x - 20y = - 6480
we get 5y = 620
Therefore, y = 124.

Hence, number of 25-paise coins = 124.
(1)

Imran ali said:   1 decade ago
A total of 324 coins of 20 paise and 25 paise make a sum of Rs 71, then the number of 25 paise coins is.

Answer:

Let number of 25 paise coins be x.
Then number of 20 paise coins = (324 - x).

Value of the 25 paise coins = (25*x) paise.
Value of the 20 paise coins = (20*(324 - x)) paise.

Total value = Rs 71 = 7100 paise.

So we have the equation,

25%2Ax+%2B+20%2A%28324+-+x%29+=+7100 Solve for x.
25%2Ax+%2B+6480+-+20%2Ax+=+7100.
5%2Ax+=+7100+-+6480+=+620.
x+=+620%2F5+=+124.

No.of 25p coins = 124.
No.of 20p coins = 324 - 124 = 200.

Hasna said:   9 years ago
Not getting please explain clearly.

MUHAMMAD JUNAID said:   6 years ago
Excellent, Thanks @Sirri.

Post your comments here:

Your comments will be displayed after verification.