Engineering Mechanics - General Principles - Discussion

Discussion Forum : General Principles - General Questions (Q.No. 7)
7.

Determine the length of side AB if right angle ABC is similar to right angle A'B'C':
AB = 5.42
AB = 3
AB = 5
AB = 4
Answer: Option
Explanation:
No answer description is available. Let's discuss.
Discussion:
9 comments Page 1 of 1.

ADITYA KASHYAP said:   5 years ago
b'c'= square root 36^2+15^2=39 we get;

B'C'\BC=AC\A'C' THEN WE GET AC=13*36 \39=12.
c=12.

AB= √ 13^2-12^2=5 ANS.
(1)

Nayan said:   1 decade ago
(B'C')^2 = (A'C')^2+(A'B')^2.

B'C' = sqrt[(36)^2+(15)^2].

B'C' = 39.

From Similar Triangles,

AB/A'B' = BC/B'C'.

AB = BC*A'B'/B'C'.

AB = 13*15/39.

AB = 5.

Shruti said:   1 decade ago
Is they are equilateral triangle?

Hamid alawi said:   1 decade ago
B'C' = 36^2 + 15^2 = 1521 square root = 39.
39/ 13 =3.

BC =13.

Now we get AC .
36/3 =12.

13 + 12 = 25 square root of 25 = 5.

Ashwin said:   1 decade ago
B'C'=(36^2+15^2)^1/2
B'C'=39
From similar Triangles
BC/B'C' =13/39 =0.33333
AB=A'B' x 0.333 = 5.

Kaushik gamit said:   1 decade ago
(36^2+15^2)^1/2=39

According to A'B'C'
tanx=36/15
x=67.38
is equals to <B

cos67.38=AB/BC=AB/13

So, AB=5

M.prakash said:   1 decade ago
How to solve this problem explain?

Saurabh khatri said:   1 decade ago
Here.

C'B'=39.

But CB=13.

So CB=1/3 part of C'B'.

Then AB=1/3 part of A'B' (triangles are similar).

So AB=5.

NAVEEN said:   1 decade ago
B'C'=(36^2+15^2)^1/2
B'C'=39
From similar Triangles
AB/A'B' =13/39
AB=5

Post your comments here:

Your comments will be displayed after verification.