Civil Engineering - Surveying - Discussion

Discussion Forum : Surveying - Section 1 (Q.No. 40)
40.
The bearings of the lines AB and BC are 146° 30' and 68° 30'. The included angle ABC is
102°
78°
45°
none of these.
Answer: Option
Explanation:
No answer description is available. Let's discuss.
Discussion:
40 comments Page 1 of 4.

Diganta Bikash Maji said:   8 months ago
FB of AB=146°30',
So BB of AB or FB of BA = 180° + 146°30' =326°30',
Exterior Angle ABC = (326°30' - 68°30') =258°,
Interior Angle = 360°- 258°) = 102°.
(3)

Sneha said:   2 years ago
180°-146°=34°.
And 34°- 68°30' = 102°.
(10)

Fakhar naveed said:   3 years ago
146°30 + 68°30 - 180 = 102°.
(23)

Ramjan said:   3 years ago
Angle ABC= 360*(326°30'-68°30')
=102°00'00"
since this will be anti-clockwise so;

Interior angle =360*[(BB)AB-(FB)BC].
(3)

Bashant Khadka said:   4 years ago
180-146°30'=33°3';
Include angle = 33°3`+68°3'= 102° Ans.
(11)

Prakash Singh Thakuri said:   4 years ago
(68°30' + 180°-146°30'.
= 102°00'00".
(9)

Dipankar Barman said:   4 years ago
BB of AB - FB of BC
(180° + 146°30') - 68°30'
= 326°30'- 68°30'.
= 258°(exterior angle),

So included angle = 360°- 258°,
= 102°.
(11)

Yojana said:   5 years ago
∠ABC= BB-FB.
146 30 - 68 30 = 78.
180+78= 102°.
(3)

Karan Yadav said:   5 years ago
180 - 146 = 34.
34 + 68 = 102.
(3)

Mukesh Shah said:   5 years ago
Includes angle = fb of next line - bb of the previous line.
= 68.30 - (146.30 + 180).
= 63.38 - 326.30.
= -258.

Angel can not be negative so it will be added by 360.
= -258 + 360.
=102.
(4)


Post your comments here:

Your comments will be displayed after verification.