Aptitude - Numbers - Discussion
Discussion Forum : Numbers - General Questions (Q.No. 22)
22.
753 x 753 + 247 x 247 - 753 x 247 | = ? |
753 x 753 x 753 + 247 x 247 x 247 |
Answer: Option
Explanation:
Given Exp. = | (a2 + b2 - ab) | = | 1 | = | 1 | = | 1 |
(a3 + b3) | (a + b) | (753 + 247) | 1000 |
Discussion:
24 comments Page 2 of 3.
Muhammad Ahsan said:
9 years ago
Can anybody explain after this step?
a2+b2-ab / a2+b2-ab.
How 1/a+b comes from that above equation?
a2+b2-ab / a2+b2-ab.
How 1/a+b comes from that above equation?
Kiran said:
6 years ago
Can you explain the formula for the answer?
Zain said:
6 years ago
I am not getting this, Please anyone explain me.
Sriji said:
8 years ago
Explain the formula please.
Pritika Sharma said:
1 decade ago
Can you please explain the procedure.
Divi said:
9 years ago
Anyone please derive this equation a^3 + b^3 = a^2 + b^2 - ab.
Sushma said:
9 years ago
Couldn't get it. Explain clearly to understand it.
Sangeetha said:
10 years ago
(753)^2+(247)^2-(753)(247)
------------------------------------
(753) ^3 + (247) ^3
a^2+b^2-ab.
=------------------.
a^3 + b^3.
Since, a^3+b^3 = (a+b) (a^2 + b^2 - ab).
Therefore, 1/(a+b) is the answer (1/1000).
------------------------------------
(753) ^3 + (247) ^3
a^2+b^2-ab.
=------------------.
a^3 + b^3.
Since, a^3+b^3 = (a+b) (a^2 + b^2 - ab).
Therefore, 1/(a+b) is the answer (1/1000).
Moin said:
1 decade ago
Didn't understand. How you did you solve it?
Sriaknth said:
1 decade ago
@Pawan .
(a+b) = a3+b3/(a2+b2-ab). We want as reverse so as 1/a+b.
(a+b) = a3+b3/(a2+b2-ab). We want as reverse so as 1/a+b.
Post your comments here:
Quick links
Quantitative Aptitude
Verbal (English)
Reasoning
Programming
Interview
Placement Papers