Aptitude - Numbers - Discussion

Discussion Forum : Numbers - General Questions (Q.No. 22)
22.
753 x 753 + 247 x 247 - 753 x 247 = ?
753 x 753 x 753 + 247 x 247 x 247
1
1000
1
506
253
500
None of these
Answer: Option
Explanation:
Given Exp. = (a2 + b2 - ab) = 1 = 1 = 1
(a3 + b3) (a + b) (753 + 247) 1000
Discussion:
24 comments Page 1 of 3.

Imran khan said:   4 years ago
Let a = 753 and b = 247.

Replace all numbers with "a" and "b".

You will get:
a * a + b * b - a * b/a *a * a + b *b * b,

That is, a^2 + b^2 - ab/a^3 + b^3,

As per formula:

(a^2 + b^2 - ab/a^3 + b^3).
(a^3+b^3)=(a+b)(a^2+b^2-ab),
= (a^2+b^2-ab)/(a^3+b^3),
= (a^2+b^2-ab)/(a+b)(a^2+b^2-ab).
= 1/(a+b).
1/(743+247) => 1/1000.
(10)

Nirmal Saxena said:   9 years ago
Let a = 753 and b = 247.

Replace all numbers with "a" and "b".

You will get:

a * a + b * b - a * b/a *a * a + b *b * b,

That is, a^2 + b^2 - ab/a^3 + b^3,

As per formula:

(a^2 + b^2 - ab/a^3 + b^3) = 1/(a + b),

1/(743+247) => 1/1000.
(1)

P.s.Deepa said:   1 decade ago
In the denominator
=(753*753*753)+(247*247*247)
=(a*a*a)+(b*b*b)
=a3+b3
Here we assume 753 as "a" and 247 as "b". Since in the denominator 753 is three times so we are writing a^3 and 247 is three times so b^3.

Sangeetha said:   10 years ago
(753)^2+(247)^2-(753)(247)
------------------------------------
(753) ^3 + (247) ^3

a^2+b^2-ab.
=------------------.
a^3 + b^3.

Since, a^3+b^3 = (a+b) (a^2 + b^2 - ab).

Therefore, 1/(a+b) is the answer (1/1000).

Shweta said:   9 years ago
@Divi.

(a^2 + b^2 - ab)/(a^3 + b^3).

Formula: (a^3 + b^3) = (a+b)(a^2 + b^2 - ab).
(a^2 + b^2 - ab)/(a + b)(a^2 + b^2 - ab) = 1/(a+b).
(1)

Abhishek said:   1 decade ago
Pritika, its simple. Look.

a3 + b3= (a + b) (a2 + b2 - ab). It is maths formula.

Therefore put the formula. You get the answer.

Shipra said:   6 years ago
(753) ^2+(247) ^2-753*247/(753) ^3+(247) ^3.
= (753) +(247) /+(753) ^3+(247) ^3.
= 1/(753) ^2+(247) ^2.
= 1/(753+247).
= 1/1000.
(2)

Chaitra said:   4 years ago
Formula:(a^3+b^3)=(a+b)(a^2+b^2-ab),
= (a^2+b^2-ab)/(a^3+b^3),
= (a^2+b^2-ab)/(a+b)(a^2+b^2-ab).
= 1/(a+b).
(5)

Muhammad Ahsan said:   9 years ago
Can anybody explain after this step?

a2+b2-ab / a2+b2-ab.

How 1/a+b comes from that above equation?

Arjuna said:   7 years ago
Here, we can use.

(a^3+b^3) = (a+b) (a^2-ab+b^2).
1/(a+b) = (a^2-ab+b^2)/(a^3+b^3).
(4)


Post your comments here:

Your comments will be displayed after verification.