Civil Engineering - Theory of Structures - Discussion
Discussion Forum : Theory of Structures - Section 2 (Q.No. 38)
38.
In the truss, the force in the member AC is


Discussion:
14 comments Page 1 of 2.
Gajendra Raj Joshi said:
4 years ago
Clearly, option C is correct with a value 8.75/√3 t Tensile in nature.
(1)
Pramit Samanta said:
4 years ago
Yes, it's option C as the bottom is always under tension except there is reverse load.
(1)
Kakar said:
5 years ago
According to me, option C is the correct answer.
Dnyanesh Mane said:
5 years ago
Option C is the right answer.
Umesh said:
5 years ago
Option D is the correct answer.
Use Lamis theorem.
Fac=8.75*(sin120)/(sin60) = -8.75/(√3).
Use Lamis theorem.
Fac=8.75*(sin120)/(sin60) = -8.75/(√3).
(1)
Noman Saeed said:
6 years ago
First of all, calculate the reactions at the supports. You will get Ra=70t/8 and Re=50t/8. By using the method of joints take sigma Fy=0 at support A.
You will get the value of Force in AB member=-70t/4*sqrt3.
After it, take Sigma Fx=0 at support A, and you will get the value of force in AC member 8.75t/sqrt 3.
You will get the value of Force in AB member=-70t/4*sqrt3.
After it, take Sigma Fx=0 at support A, and you will get the value of force in AC member 8.75t/sqrt 3.
Halo said:
6 years ago
Thanks, @Sangam.
Sangam said:
6 years ago
Reaction Ra = 8.75t.
Fab = Ra/sin60.
Fac = Fab*cos60.
Fab = Ra/sin60.
Fac = Fab*cos60.
Ufag said:
6 years ago
Please, anyone explain the correct answer.
Nilraj said:
7 years ago
Yes, I agree with option C.
Post your comments here:
Quick links
Quantitative Aptitude
Verbal (English)
Reasoning
Programming
Interview
Placement Papers