Civil Engineering - RCC Structures Design - Discussion

Discussion Forum : RCC Structures Design - Section 1 (Q.No. 43)
43.
If the effective length of a 32 cm diameter R.C.C. column is 4.40 m, its slenderness ratio, is
40
45
50
55
60
Answer: Option
Explanation:
No answer description is available. Let's discuss.
Discussion:
13 comments Page 1 of 2.

Ashraf said:   1 decade ago
What is the formula?

JEETENDRA said:   1 decade ago
Slenderness ratio = L\K.

K= ROOT I\A.
I= 3.14*D*D*D*D\64.
A= 3.14*D*D\4.

Musa said:   1 decade ago
kl/r = slenderness ratio.
k assumed = 1.
r for circular column = 0.25 Diameter.
440/(.25*32) = 55.
(1)

Mahesh katkar said:   1 decade ago
Slenderness ratio = L\K.
k = ROOT (I min.\A).

I = 3.14*0.32^4/64 = 0.0005147 m4.
A = 3.14*0.32^2\4 = 0.080.
ROOT I/A = 0.0802.

K = 4.4/.0802 = 54.86 say 55.

Shehzad said:   1 decade ago
Slenderness ratio = L/r.

r = 0.25 D.
= 0.25x32 = 8.

Slenderness ratio = 440/8 = 55.
(1)

Abhishek kumar said:   1 decade ago
K=d/4.
=0.32/4.
=0.08.

S.R=l/k.
=4.40/0.08.
=55.

S.R=55.
(1)

Kh . danish said:   9 years ago
Slenderness ratio = 4l/d.
= 4 x 4.40/32cm convert it to m.
= 4 * 4.40/0.32,
= 55.
(1)

Nithu said:   8 years ago
Thanks @Musa.
(2)

Asay said:   8 years ago
Slenderness Ratio=l/r(min) -------------(1)
Here ,
l=4.4m=440cm
And ,
r(min)=[I/A]^1/2 --------------(2)
Here ,
I=pi*d^4/64
=3.24*(32)^4/64
=51445.76cm^4

Now,
A=pi*d^2/4
=3.14*(32)^2/4
=803.84cm^2
Now putting values in eqn (2)
r(min)=[51445.76cm^4/803.84cm^2]^2
=8cm
Now, putting all the values in eqn (1)
Slenderness Ratio=440cm/8cm
=55.
So,
(D) is Correct Ans.

Nirman said:   7 years ago
Sr = length/least radius of gyration.

The Radius of gyration = root (Moment of inertia of circular columns/Area of the section).
(1)


Post your comments here:

Your comments will be displayed after verification.