Aptitude - Permutation and Combination - Discussion

Discussion Forum : Permutation and Combination - General Questions (Q.No. 4)
4.
Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?
210
1050
25200
21400
None of these
Answer: Option
Explanation:

Number of ways of selecting (3 consonants out of 7) and (2 vowels out of 4)

      = (7C3 x 4C2)
= 7 x 6 x 5 x 4 x 3
3 x 2 x 1 2 x 1
= 210.

Number of groups, each having 3 consonants and 2 vowels = 210.

Each group contains 5 letters.

Number of ways of arranging
5 letters among themselves
= 5!
= 5 x 4 x 3 x 2 x 1
= 120.

Required number of ways = (210 x 120) = 25200.

Video Explanation: https://youtu.be/dm-8T8Si5lg

Discussion:
65 comments Page 7 of 7.

Suchi said:   1 decade ago
c = consonants
v = vowels

Why has the num of letters has to be 5?

Can't it be 4c+3v(7 letter) or 5c+4v(9 letters)

Then how can v take 5! ?

Pranay said:   1 decade ago
The question doesn't mention "distinct" consonants or vowels. So repetition should be allowed.

Student said:   1 decade ago
Can't we apply permutation directly here since in this question arrangement of words is to be done. i.e.

7P3*4P2 = 2520

One zero less to match the answer of 25200 :(

Rahul said:   1 decade ago
@ Anil: The basic idea here is that first you pick out 3 consonants out of 7 and 2 vowels out of 4. Then you take the 5 letters that you have and make a word out of it. To pick out 3 consonants out of 7 you use the combination without repetition formula which states n!/(n-r)!r! which gives you 7C3 and the same for vowels gives you 4C2.

Once you have done that, you still need to make a word of it. You have 5 letters now that can be arranged into 5! ways to make a word so you multiply the three values since each step is dependent on the step before to make the final word. The answer comes out to be 35 x 6 x 120 respectively for each step mentioned chronologically.
(1)

Anil said:   1 decade ago
Why multiply with 5?


Post your comments here:

Your comments will be displayed after verification.