Aptitude - Permutation and Combination - Discussion

Discussion Forum : Permutation and Combination - General Questions (Q.No. 14)
14.
In how many different ways can the letters of the word 'OPTICAL' be arranged so that the vowels always come together?
120
720
4320
2160
None of these
Answer: Option
Explanation:

The word 'OPTICAL' contains 7 different letters.

When the vowels OIA are always together, they can be supposed to form one letter.

Then, we have to arrange the letters PTCL (OIA).

Now, 5 letters can be arranged in 5! = 120 ways.

The vowels (OIA) can be arranged among themselves in 3! = 6 ways.

Required number of ways = (120 x 6) = 720.

Discussion:
36 comments Page 3 of 4.

Rajeev said:   6 years ago
But the vowel can come in the beginning like;

OIAPTCL.
PTCLOIA.
So, we should add like this (5!*3!+5!*3!)
(1)

BadShah KinG said:   8 years ago
How many five different letter words can be formed out of the word "LOGARITHMS" ?

Can anyone solve this?

Pastor ThankGod Anyanwu said:   1 decade ago
How many different 10-member committees can be formed from the 100-members of the Nigeria Senate?

Gayathri said:   1 decade ago
There are only 4! non vowels letter present can please tell me how you did with 5 !

Sree vidya said:   8 years ago
When to use permutation & when to use a combination? Please, someone, explain it.

Sonam said:   9 years ago
If the question is asked "no vowels come together" then what will be the answer?

ACHUTHARAJ said:   1 decade ago
Ya mini is correct

P+T+C+L+(OIA)= 5!=5X4X3X2X1=120
OIA =3!=3X2X1=6
120*6=720

Kishore said:   1 decade ago
Can you please brief me about 5!letters = 120 ways and 3! = 6 ways

Logesh said:   1 decade ago
How to find the rank of the word with possible combinations?

Karan kumar said:   7 years ago
Vowels come together so there are 5!
And 3!.
120 * 6 = 720.


Post your comments here:

Your comments will be displayed after verification.