# Aptitude - Numbers - Discussion

### Discussion :: Numbers - General Questions (Q.No.35)

35.

 (963 + 476)2 + (963 - 476)2 = ? (963 x 963 + 476 x 476)

 [A]. 1449 [B]. 497 [C]. 2 [D]. 4 [E]. None of these

Explanation:

 Given Exp. = (a + b)2 + (a - b)2 = 2(a2 + b2) = 2 (a2 + b2) (a2 + b2)

 Ayush Sakhare said: (Dec 16, 2015) How did you add (a+b)2 & (a-b)2?

 Abhishek Guruji said: (Jun 22, 2016) (a+b)^2 + (a-b)^2, a^2 + b^2 + 2ab + a^2 + b^2 - 2ab, a^2 + b^2 + a^2 + b^2, 2a^2 + 2b^2, 2(a^2+b^2).

 Bruce said: (Aug 5, 2016) (a + b) ^2 + (a - b) ^2 = 2 (a^2 + b^2). (a^2 + b^2) = 1/2 [(a + b) ^2 + (a - b) ^2]. Then, 2 (a^2 + b^2) ÷ 1/2[(a + b) ^2 + (a - b) ^2]. Then, 2 * 2/1 = 4. Why 4 is not an answer? please help me.

 Swechha said: (Aug 22, 2018) Please, Explain the steps to get the answer.

 Kamlesh Bisht said: (Apr 1, 2019) a^2+b^2 = 1/2(a+b)^2+(a+b)^2 use this formula.

 Ananthu said: (Aug 4, 2021) (a+b) ^2+ (a-b) ^2/ (a^2 + b^2) = a^2+b^2+2ab+a^2+b^2-2ab/(a^2 + b^2). 2a^2+2b^2/ (a^2 + b^2) = 2 (a^2+b^2)/(a^2 + b^2) = 2.

 Tashi Tshering said: (Aug 5, 2021) (a+b)^2 +(a-b)^2. Since power is 2 is even no. Even though there is -b, it will become positive. So a^2+b^2+a^2+b^2= 2a^2+2b^2. Take common one out 2(a^2+b^2)/(a^2+b^2). Which is exactly divisible by the denominator.