Aptitude - Problems on Trains - Discussion
Discussion Forum : Problems on Trains - General Questions (Q.No. 4)
4.
Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:
Answer: Option
Explanation:
Let the speeds of the two trains be x m/sec and y m/sec respectively.
Then, length of the first train = 27x metres,
and length of the second train = 17y metres.
|
27x + 17y | = 23 |
| x+ y |
27x + 17y = 23x + 23y
4x = 6y
|
x | = | 3 | . |
| y | 2 |
Discussion:
237 comments Page 24 of 24.
Arun said:
2 decades ago
Based on the below formula -- >
If two trains of length a(i.e. 27x) metres and b(i.e. 17y) metres are moving in opposite directions at x m/s and y m/s, then:
The time taken by the trains to cross each other (i.e.23 sec) =
(27x + 17y)
```````` secs
(x + y)
Therefore, the above solution is provided based on this derivation. Its given in the formulas section.
If two trains of length a(i.e. 27x) metres and b(i.e. 17y) metres are moving in opposite directions at x m/s and y m/s, then:
The time taken by the trains to cross each other (i.e.23 sec) =
(27x + 17y)
```````` secs
(x + y)
Therefore, the above solution is provided based on this derivation. Its given in the formulas section.
Boomathi said:
2 decades ago
very good solution....
Janardhan said:
2 decades ago
It's correct method to solve this problem.
Arjun said:
2 decades ago
(27x+17y)/x+y=23 how did used that step?
Niveditha said:
2 decades ago
Anyone please help me how this x+y is divided.
K.kiran kumar said:
2 decades ago
I can't get this step
(27x+17y) / (x+y) = 23
Why we have to use this? can any one explain me.
(27x+17y) / (x+y) = 23
Why we have to use this? can any one explain me.
Poornima said:
2 decades ago
Let me explain in detail if anyone still not understood yet.
Please remember the formula for finding speed. Speed = Distance/Time.
Therefore, Distance = Speed x Time.
If a train crosses a man/pole/post/tree in T seconds, and speed of the train is S m/s, then
Then, the Length of the Train = (Speed x Time) = ST metres.
Note: Here, the distance traveled by train in T seconds at the Speed of S m/s is equal to the length of the train.
Now, lets come to the given problem.
Let speed of the first train = X.
Time taken taken by the first train to cross a man = 27 seconds.
Therefore, Length of the first train = Speed x Time = X x 27 = 27X metres.
Let speed of the second train = Y.
Time taken taken by the second train to cross a man = 17 seconds.
Therefore, Length of the second train = 17Y metres.
Important Formula:
If two trains of length a metres and b metres are moving in opposite directions at u m/s and v m/s, then:
The time taken by the trains to cross each other = (a + b) / (u + v) sec.
Given that, (a + b) / (u + v) = 23 seconds.
Here, a = 27X, b = 17Y and u = X, v = Y.
Therefore, (27X + 17Y)/(X + Y) = 23.
=> 27X + 17Y = 23X + 23Y
=> 4X = 6Y
=> X/Y = 6/4 = 3/2
=> X : Y = 3 : 2.
Please remember the formula for finding speed. Speed = Distance/Time.
Therefore, Distance = Speed x Time.
If a train crosses a man/pole/post/tree in T seconds, and speed of the train is S m/s, then
Then, the Length of the Train = (Speed x Time) = ST metres.
Note: Here, the distance traveled by train in T seconds at the Speed of S m/s is equal to the length of the train.
Now, lets come to the given problem.
Let speed of the first train = X.
Time taken taken by the first train to cross a man = 27 seconds.
Therefore, Length of the first train = Speed x Time = X x 27 = 27X metres.
Let speed of the second train = Y.
Time taken taken by the second train to cross a man = 17 seconds.
Therefore, Length of the second train = 17Y metres.
Important Formula:
If two trains of length a metres and b metres are moving in opposite directions at u m/s and v m/s, then:
The time taken by the trains to cross each other = (a + b) / (u + v) sec.
Given that, (a + b) / (u + v) = 23 seconds.
Here, a = 27X, b = 17Y and u = X, v = Y.
Therefore, (27X + 17Y)/(X + Y) = 23.
=> 27X + 17Y = 23X + 23Y
=> 4X = 6Y
=> X/Y = 6/4 = 3/2
=> X : Y = 3 : 2.
(7)
Post your comments here:
Quick links
Quantitative Aptitude
Verbal (English)
Reasoning
Programming
Interview
Placement Papers