Aptitude - Alligation or Mixture - Discussion

Discussion Forum : Alligation or Mixture - General Questions (Q.No. 4)
4.
A milk vendor has 2 cans of milk. The first contains 25% water and the rest milk. The second contains 50% water. How much milk should he mix from each of the containers so as to get 12 litres of milk such that the ratio of water to milk is 3 : 5?
4 litres, 8 litres
6 litres, 6 litres
5 litres, 7 litres
7 litres, 5 litres
Answer: Option
Explanation:

Let the cost of 1 litre milk be Re. 1

Milk in 1 litre mix. in 1st can = 3 litre, C.P. of 1 litre mix. in 1st can Re. 3
4 4

Milk in 1 litre mix. in 2nd can = 1 litre, C.P. of 1 litre mix. in 2nd can Re. 1
2 2

Milk in 1 litre of final mix. = 5 litre, Mean price = Re. 5
8 8

By the rule of alligation, we have:

C.P. of 1 litre mixture in 1st can    C.P. of 1 litre mixture in 2nd can
3
4
Mean Price
5
8
1
2
1
8
1
8

Ratio of two mixtures = 1 : 1 = 1 : 1.
8 8

So, quantity of mixture taken from each can = 1 x 12 = 6 litres.
2

Discussion:
74 comments Page 8 of 8.

Nagendramurthy said:   1 decade ago
Friends see can also solve the problem..
initially water and milk in first can are in 1/4 and 3/4
in the second can 1/2 and 1/2

therefore total (1/4)+(1/2) of water and (3/4)+(1/2)

i.e (3/4) of water and (5/4) of milk

If we compare it already in the ratio of 3:5

So we have add equal amount of water and milk in order to maintain the ratio same..

MANISH said:   1 decade ago
Initially water and milk percent was 25% water and 75%milk
in 2nd container 50-50%

finally milk was 12 litre
ratio was 3:5 means 3x water and 5x milk s0 5x=12 ;x= 12/5
water 36/5
milk percentage 12/(12+36/5)=62.5
soincrease in milk percentage 12.5%each so omly one option is matching

Mahendra said:   1 decade ago
@moncy The solution to this problem is right

Ans is [B] 6 litres, 6 litre

6 liters from first can gives 1.5 litre of water and 4.5 of milk
6 liters from second can gives 3 litres of water and 3 litres of milk
so, (1.5+3)/(4.5+3)= 4.5/7.5 = 0.6 = 3/5

Moncy said:   1 decade ago
If it is 6litres of milk and 6litres of water making 12litres of the mix,then does not it mean that milk and water is 50% and 50%??how will it be in the ratio 3:5 to satisfy the requirement??Please explain this..


Post your comments here:

Your comments will be displayed after verification.